Acronyms and long-forms are commonly found in research documents, more so in documents from scientific and legal domains. Many acronyms used in such documents are domain-specific and are very rarely found in normal text corpora. Owing to this, transformer-based NLP models often detect OOV (Out of Vocabulary) for acronym tokens, especially for non-English languages, and their performance suffers while linking acronyms to their long forms during extraction. Moreover, pretrained transformer models like BERT are not specialized to handle scientific and legal documents. With these points being the overarching motivation behind this work, we propose a novel framework CABACE: Character-Aware BERT for ACronym Extraction, which takes into account character sequences in text and is adapted to scientific and legal domains by masked language modelling. We further use an objective with an augmented loss function, adding the max loss and mask loss terms to the standard cross-entropy loss for training CABACE. We further leverage pseudo labelling and adversarial data generation to improve the generalizability of the framework. Experimental results prove the superiority of the proposed framework in comparison to various baselines. Additionally, we show that the proposed framework is better suited than baseline models for zero-shot generalization to non-English languages, thus reinforcing the effectiveness of our approach. Our team BacKGProp secured the highest scores on the French dataset, second-highest on Danish and Vietnamese, and third-highest in the English-Legal dataset on the global leaderboard for the acronym extraction (AE) shared task at SDU AAAI-22.
翻译:研究文件中通常有缩略语和长形,在科学和法律领域的文件中尤其如此。这类文件中使用的许多缩略语是特定域的,在普通文本公司中很少找到。因此,基于变压器的NLP模型常常检测到缩略语符号(特别是非英语语言的缩略语)的OOV(出于词汇),其性能也受到影响,同时将缩略语与其在提取过程中的长式连接起来。此外,诸如BERT这样的未经培训的变压器模型并不专门处理科学和法律文件。由于这些点是这项工作的主要动力,我们提出了一个新的框架:CABACE:Aware BERT for Acronym Exprivilon,其中考虑到文本中的字符序列顺序,并且通过遮蔽语言模型来适应科学和法律领域。我们进一步使用一个目标,将损失最高值与标准跨作物损失相加起来,用于培训CABACE。我们进一步利用假标签和对抗数据生成来改进框架的通用性能性。实验性结果证明,Arbalal-lainal-lades the rest restest lefest ruder ruder abal ruilder a flaxal lade flade a lax the sliver lade fal lade lade lax lax lax lax lax a s bal lax lade lade lade a lade a latibildal latipeal ladal ladal ladal ladal lade lade a ladaldaldal ladal ladddddaldaldaldaldddddaldaldaldaldal ladal ladal ladaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal labaldal lautdal ladal ladal ladal ladal ladal ladaldal labaldaldal ladal ladaldaldaldal