Interactions between actors are frequently represented using a network. The latent position model is widely used for analysing network data, whereby each actor is positioned in a latent space. Inferring the dimension of this space is challenging. Often, for simplicity, two dimensions are used or model selection criteria are employed to select the dimension, but this requires choosing a criterion and the computational expense of fitting multiple models. Here the latent shrinkage position model (LSPM) is proposed which intrinsically infers the effective dimension of the latent space. The LSPM employs a Bayesian nonparametric multiplicative truncated gamma process prior that ensures shrinkage of the variance of the latent positions across higher dimensions. Dimensions with non-negligible variance are deemed most useful to describe the observed network, inducing automatic inference on the latent space dimension. While the LSPM is applicable to many network types, logistic and Poisson LSPMs are developed here for binary and count networks respectively. Inference proceeds via a Markov chain Monte Carlo algorithm, where novel surrogate proposal distributions reduce the computational burden. The LSPM's properties are assessed through simulation studies, and its utility is illustrated through application to real network datasets. Open source software assists wider implementation of the LSPM.
翻译:行为者之间的互动经常使用网络进行。潜伏位置模型被广泛用于分析网络数据,使每个行为者处于潜伏空间中。推断这一空间的维度具有挑战性。通常,为简单起见,使用两个维度,或采用模型选择标准来选择该维度,但这就要求选择一个标准和匹配多个模型的计算费用。在此提出了潜伏缩缩缩缩位模型(LSPM),从内在角度推断潜伏空间的有效维度。LSPM 模型(LSPM),从本质上推导潜伏空间的有效维度。LSPM 潜伏位置模型(LSPM ), 使用一种巴伊西亚非参数性非参数的多倍增法伽马进程, 之前可以确保潜伏位置在较高维度上的差异缩小。 具有非隐性差异的维度被认为最有助于描述所观测到的网络, 导致对潜伏空间维度空间维度的自动推断值。 LSPMMMT在这里分别适用于许多网络类型, 后勤和Poisson LSPMs, 和计数LSPMMS 。推导通过Markov Conteal 算, 通过新的代建议分配减少计算负担。LPMS 。 LS 的配置,通过模拟网络的应用将数据源的应用演示到实际应用。