Softwarization and virtualization are key concepts for emerging industries that require ultra-low latency. This is only possible if computing resources, traditionally centralized at the core of communication networks, are moved closer to the user, to the network edge. However, the realization of Edge Computing (EC) in the sixth generation (6G) of mobile networks requires efficient resource allocation mechanisms for the placement of the Virtual Network Functions (VNFs). Machine learning (ML) methods, and more specifically, Reinforcement Learning (RL), are a promising approach to solve this problem. The main contributions of this work are twofold: first, we obtain the theoretical performance bound for VNF placement in EC-enabled6G networks by formulating the problem mathematically as a finite Markov Decision Process (MDP) and solving it using a dynamic programming method called Policy Iteration (PI). Second, we develop a practical solution to the problem using RL, where the problem is treated with Q-Learning that considers both computational and communication resources when placing VNFs in the network. The simulation results under different settings of the system parameters show that the performance of the Q-Learning approach is close to the optimal PI algorithm (without having its restrictive assumptions on service statistics). This is particularly interesting when the EC resources are scarce and efficient management of these resources is required.
翻译:软化和虚拟化是需要超低潜值的新兴产业的关键概念。 只有当计算机资源(传统上集中在通信网络核心)更接近用户和网络边缘时,计算机资源(传统上集中在通信网络核心处)才能实现软化和虚拟化。 然而,在移动网络的第六代(6G)实现边缘计算(EC)需要高效的资源分配机制来设置虚拟网络功能(VNF)。 机器学习(ML)方法,更具体地说,强化学习(RL)是解决这一问题的一个很有希望的方法。 这项工作的主要贡献是双重的:首先,我们通过数学方式将问题发展成一个有限的Markov决策程序(MDP),并使用称为PolicyLation(PI)的动态编程方法来解决。 其次,我们开发出一个解决问题的实用解决方案,用Q-L(L)方法在将VNF纳入网络时既考虑计算资源,又考虑通信资源。 在不同的系统参数下,模拟结果显示,Q-LEF6G网络网络网络网络化网络化网络化网络化网络化的理论性能性能性能,我们得到约束,因为Q-LESTEAR方法在这种精华性资源管理上,而这种精锐化的精锐化的模型是接近于最有节制。