Recently, open radio access network (O-RAN) has become a promising technology to provide an open environment for network vendors and operators. Coordinating the x-applications (xAPPs) is critical to increase flexibility and guarantee high overall network performance in O-RAN. Meanwhile, federated reinforcement learning has been proposed as a promising technique to enhance the collaboration among distributed reinforcement learning agents and improve learning efficiency. In this paper, we propose a federated deep reinforcement learning algorithm to coordinate multiple independent xAPPs in O-RAN for network slicing. We design two xAPPs, namely a power control xAPP and a slice-based resource allocation xAPP, and we use a federated learning model to coordinate two xAPP agents to enhance learning efficiency and improve network performance. Compared with conventional deep reinforcement learning, our proposed algorithm can achieve 11% higher throughput for enhanced mobile broadband (eMBB) slices and 33% lower delay for ultra-reliable low-latency communication (URLLC) slices.
翻译:最近,开放无线电接入网络(O-RAN)已成为为网络销售商和运营商提供一个开放环境的一个大有希望的技术。协调x应用软件(xAPP)对于提高灵活性和保证O-RAN网络的总体业绩至关重要。与此同时,提议将联合强化学习作为加强分布式强化学习机构之间协作和提高学习效率的一个大有希望的技术。在本文中,我们建议采用一个联合深度强化学习算法,以协调O-RAN网络切片的多个独立 xAPP。我们设计了两个xAPP,即电力控制xAPP和切片资源分配xAPP,我们使用一种联合学习模式来协调两个xAPP代理,以提高学习效率和改善网络业绩。与传统的深度强化学习相比,我们提议的算法可以达到11%的更高乘数,用于增强移动宽带(eMBB)切片和33%的超能性低热度低频通信(URLC)切片。