Recently, open radio access network (O-RAN) has become a promising technology to provide an open environment for network vendors and operators. Coordinating the x-applications (xAPPs) is critical to increase flexibility and guarantee high overall network performance in O-RAN. Meanwhile, federated reinforcement learning has been proposed as a promising technique to enhance the collaboration among distributed reinforcement learning agents and improve learning efficiency. In this paper, we propose a federated deep reinforcement learning algorithm to coordinate multiple independent xAPPs in O-RAN for network slicing. We design two xAPPs, namely a power control xAPP and a slice-based resource allocation xAPP, and we use a federated learning model to coordinate two xAPP agents to enhance learning efficiency and improve network performance. Compared with conventional deep reinforcement learning, our proposed algorithm can achieve 11% higher throughput for enhanced mobile broadband (eMBB) slices and 33% lower delay for ultra-reliable low-latency communication (URLLC) slices.


翻译:最近,开放无线电接入网络(O-RAN)已成为为网络销售商和运营商提供一个开放环境的一个大有希望的技术。协调x应用软件(xAPP)对于提高灵活性和保证O-RAN网络的总体业绩至关重要。与此同时,提议将联合强化学习作为加强分布式强化学习机构之间协作和提高学习效率的一个大有希望的技术。在本文中,我们建议采用一个联合深度强化学习算法,以协调O-RAN网络切片的多个独立 xAPP。我们设计了两个xAPP,即电力控制xAPP和切片资源分配xAPP,我们使用一种联合学习模式来协调两个xAPP代理,以提高学习效率和改善网络业绩。与传统的深度强化学习相比,我们提议的算法可以达到11%的更高乘数,用于增强移动宽带(eMBB)切片和33%的超能性低热度低频通信(URLC)切片。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员