We present a hybrid strategy based on deep learning to compute mean curvature in the level-set method. The proposed inference system combines a dictionary of improved regression models with standard numerical schemes to estimate curvature more accurately. The core of our framework is a switching mechanism that relies on well-established numerical techniques to gauge curvature. If the curvature magnitude is larger than a resolution-dependent threshold, it uses a neural network to yield a better approximation. Our networks are multi-layer perceptrons fitted to synthetic data sets composed of circular- and sinusoidal-interface samples at various configurations. To reduce data set size and training complexity, we leverage the problem's characteristic symmetry and build our models on just half of the curvature spectrum. These savings result in compact networks able to outperform any of the system's numerical or neural component alone. Experiments with static interfaces show that our hybrid approach is suitable and notoriously superior to conventional numerical methods in under-resolved and steep, concave regions. Compared to prior research, we have observed outstanding gains in precision after including training data pairs from more than a single interface type and other means of input preprocessing. In particular, our findings confirm that machine learning is a promising venue for devising viable solutions to the level-set method's numerical shortcomings.
翻译:我们提出了一个基于深层学习的混合战略, 以计算水平定制方法中的平均曲度。 提议的推论系统将改进回归模型的字典与标准数字方法结合起来, 以更精确地估计曲度。 我们框架的核心是一个转换机制, 依靠成熟的数字技术来测量曲度。 如果曲度大小大于一个分辨率依赖的临界值, 它则使用神经网络来产生更好的近比。 我们的网络是多层透视器, 配以由循环和正弦性跨部样本组成的合成数据集。 为了降低数据集的大小和培训复杂性, 我们利用问题特性的对称法, 并构建我们仅用一半曲线谱谱谱谱谱的模型。 这些节省导致紧凑网络能够超越系统的任何数字或神经元。 静态界面实验显示, 我们的混合方法适合并且臭名昭著地优于由循环和直线性区域组成的合成数据集。 与先前的研究相比, 我们观察到了在精确度上取得的突出进展, 包括培训中精度的精确度和精确度的一半曲线谱谱谱谱谱。 这些节省的结果使得光谱网络能够超越任何系统的数字组合, 。 而不是从一个有希望的计算的方法 。