Ultrasound-guided regional anesthesia (UGRA) can replace general anesthesia (GA), improving pain control and recovery time. This method can be applied on the brachial plexus (BP) after clavicular surgeries. However, identification of the BP from ultrasound (US) images is difficult, even for trained professionals. To address this problem, convolutional neural networks (CNNs) and more advanced deep neural networks (DNNs) can be used for identification and segmentation of the BP nerve region. In this paper, we propose a hybrid model consisting of a classification model followed by a segmentation model to segment BP nerve regions in ultrasound images. A CNN model is employed as a classifier to precisely select the images with the BP region. Then, a U-net or M-net model is used for the segmentation. Our experimental results indicate that the proposed hybrid model significantly improves the segmentation performance over a single segmentation model.
翻译:超声波制导区域麻醉(UGRA)可以取代普通麻醉(GA),改善疼痛控制和恢复时间,这种方法可以适用于光臂外科手术后的胸膜双面膜(BP),但很难从超声波(US)图像中识别BP,即使对受过训练的专业人员来说也是如此。为解决这一问题,可以使用进化神经网络(CNN)和较先进的深神经网络(DNN)来识别和分解BP神经区域。在本文中,我们提议了一个混合模型,其中包括一种分类模型,然后用一个分解模型在超声图像中分解BP神经区域。有线电视网模型被用来精确选择BP区域的图像。然后,在分解时使用了U-net或M-net模型。我们的实验结果表明,拟议的混合模型大大改进了单一分解模型的分解性能。