Arbitrary-oriented object detection (AOOD) is a challenging task to detect objects in the wild with arbitrary orientations and cluttered arrangements. Existing approaches are mainly based on anchor-based boxes or dense points, which rely on complicated hand-designed processing steps and inductive bias, such as anchor generation, transformation, and non-maximum suppression reasoning. Recently, the emerging transformer-based approaches view object detection as a direct set prediction problem that effectively removes the need for hand-designed components and inductive biases. In this paper, we propose an Arbitrary-Oriented Object DEtection TRansformer framework, termed AO2-DETR, which comprises three dedicated components. More precisely, an oriented proposal generation mechanism is proposed to explicitly generate oriented proposals, which provides better positional priors for pooling features to modulate the cross-attention in the transformer decoder. An adaptive oriented proposal refinement module is introduced to extract rotation-invariant region features and eliminate the misalignment between region features and objects. And a rotation-aware set matching loss is used to ensure the one-to-one matching process for direct set prediction without duplicate predictions. Our method considerably simplifies the overall pipeline and presents a new AOOD paradigm. Comprehensive experiments on several challenging datasets show that our method achieves superior performance on the AOOD task.
翻译:以任意为导向的物体探测(AOOD)是一项艰巨的任务,目的是通过任意定向和杂乱的安排探测野生物体; 现有办法主要基于锚基箱或密点,依靠复杂的手工设计处理步骤和暗示偏差,如锚生成、变换和非最大抑制推理; 最近,以变压器为基础的新办法将物体探测视为一个直接设定的预测问题,有效地消除了对手设计的部件和感应偏差的需要; 本文中,我们提议了一个任意定向的物体探测TRex框架,称为AO2-DETR,由三个专门组成部分组成; 更准确地说,提出一个面向方向的建议生成机制,以明确产生面向方向的建议,为汇集功能以调整变压器解压缩器的交叉注意提供更好的先前位置; 引入一个适应性的建议改进模块,以提取旋转不均匀区域特性和消除区域特性与对象之间的不匹配; 使用一个旋转认知的对等损失设置,以确保一至一比匹配的过程,即由三个专门组成部分组成; 更确切地说,提出一个面向方向的建议生成机制,以明确产生面向方向的建议生成方向的建议,提供更有利的建议,提供更前的集合功能,以调整式的模型,以调整式的模型,用以在不具有挑战性的工作模型上,以显示一个具有挑战性的工作模型的模型,用以对等。