We consider the complexity of the open-world query answering problem, where we wish to determine certain answers to conjunctive queries over incomplete datasets specified by an initial set of facts and a set of Guarded TGDs. This problem has been well-studied in the literature and is decidable but with a high complexity, namely, it is 2EXPTIME complete. Further, the complexity shrinks by one exponential when the arity is fixed. We show in this paper how we can obtain better complexity bounds when considering separately the arity of the guard atom and that of the additional atoms, called the side signature. Our results make use of the technique of linearizing Guarded TGDs, introduced in a paper of Gottlog, Manna, and Pieris. Specifically, we present a variant of the linearization process, making use of a restricted version of the chase that we recently introduced. Our results imply that open-world query answering can be solved in EXPTIME with arbitrary-arity guard relations if we simply bound the arity of the side signature; and that the complexity drops to NP if we fix the side signature and bound the head arity and width of the dependencies.
翻译:我们考虑了开放世界解答问题的复杂性,我们希望确定对最初一组事实和一组保密的TGD所指定的不完整数据集的合并查询的某些答案。 这个问题在文献中得到了很好地研究,是可以分解的, 但也非常复杂, 即它已经完成了 2EXPTIME 。 此外, 当正统性固定下来时, 复杂性会因一个指数而缩小。 我们在本文件中显示, 在分别考虑守卫原子和额外原子(称为侧面签名)的对等性时, 我们如何获得更复杂的界限。 我们的结果利用了Gottlog、 Manta 和 Pieris 的论文中引入的、 直线化的 保护 TGDDT 技术。 具体地说, 我们提出了一个线性化进程的变式, 利用我们最近引入的追逐的有限版本。 我们的结果意味着, 如果我们简单地将侧面签名的对等均匀性约束, 那么开放世界的解答就能在EXPTMME 中以任意性保护关系来解决; 复杂性会下降到 NPPNP, 如果我们固定了侧面的面和宽度, 。