Big data areas are expanding in a fast way in terms of increasing workloads and runtime systems, and this situation imposes a serious challenge to workload characterization, which is the foundation of innovative system and architecture design. The previous major efforts on big data benchmarking either propose a comprehensive but a large amount of workloads, or only select a few workloads according to so-called popularity, which may lead to partial or even biased observations. In this paper, on the basis of a comprehensive big data benchmark suite---BigDataBench, we reduced 77 workloads to 17 representative workloads from a micro-architectural perspective. On a typical state-of-practice platform---Intel Xeon E5645, we compare the representative big data workloads with SPECINT, SPECCFP, PARSEC, CloudSuite and HPCC. After a comprehensive workload characterization, we have the following observations. First, the big data workloads are data movement dominated computing with more branch operations, taking up to 92% percentage in terms of instruction mix, which places them in a different class from Desktop (SPEC CPU2006), CMP (PARSEC), HPC (HPCC) workloads. Second, corroborating the previous work, Hadoop and Spark based big data workloads have higher front-end stalls. Comparing with the traditional workloads i. e. PARSEC, the big data workloads have larger instructions footprint. But we also note that, in addition to varied instruction-level parallelism, there are significant disparities of front-end efficiencies among different big data workloads. Third, we found complex software stacks that fail to use state-of-practise processors efficiently are one of the main factors leading to high front-end stalls. For the same workloads, the L1I cache miss rates have one order of magnitude differences among diverse implementations with different software stacks.


翻译:大数据领域在增加工作量和运行时间系统方面迅速扩大,这种情况对工作量定性构成严重挑战,而工作量定性是创新系统和架构设计的基础。以前关于大数据基准的重大努力要么提出全面但大量的工作量,要么只是根据所谓的受欢迎程度选择一些工作量,这可能导致部分或甚至有偏差的观察。在本文件中,根据一个全面的大数据基准套件-BigDataBench,我们从微观结构角度将77个工作量降为17个代表性工作量。关于典型的更高级做法平台-Intel Xeon E5645,我们将代表的大型数据工作量与SECINT、SPECF、PARSEC、CSloudSet和HPC进行对比。在全面的工作量定性之后,我们也有以下观察。首先,大数据工作量以更多的部门业务计算数据流动为主,从较复杂的软件组合中高达92%的指令,这使得它们位于不同的桌面(SPEC iPO) 、 IMF 前端数据(PAR) 和前端数据(HCR) 之前的数据流程中出现显著差异。

0
下载
关闭预览

相关内容

HPCC:IEEE International Conference on High Performance Computing and Communications。 Explanation:IEEE高性能计算与通信国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/hpcc/
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
105+阅读 · 2020年3月22日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
6+阅读 · 2016年1月15日
VIP会员
相关VIP内容
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
105+阅读 · 2020年3月22日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
计算机类 | PLDI 2020等国际会议信息6条
Call4Papers
3+阅读 · 2019年7月8日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员