This work resolves a longstanding open question in automata theory, i.e., the {\it linear-bounded automata question} ({\it LBA question} for short), which can also be phrased succinctly in the language of computational complexity theory as DSPACE[$n]\overset{?}{=}$ NSPACE[$n$]. We prove that DSPACE$[n]\neq$ NSPACE$[S(n)]$. Our proof technique is mainly based on diagonalization against all deterministic Turing machines of space complexity $S(n)=n$ by an universal nondeterministic Turing machine of space complexity $S(n)=n$. Our proof also implies the following fundamental consequences: (1) There exists no deterministic Turing machine of space complexity $\log n$ deciding the $st$-connectivity question (STCON); (2) $L\neq NL$; (3) $L\neq P$.
翻译:这项工作解决了自动化理论中一个长期未决问题,即直线自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的自成一体的机器。