We consider Kempe changes on the $k$-colorings of a graph on $n$ vertices. If the graph is $(k-1)$-degenerate, then all its $k$-colorings are equivalent up to Kempe changes. However, the sequence between two $k$-colorings that arises from the proof may be exponential in the number of vertices. An intriguing open question is whether it can be turned polynomial. We prove this to be possible under the stronger assumption that the graph has treewidth at most $k-1$. Namely, any two $k$-colorings are equivalent up to $O(kn^2)$ Kempe changes. We investigate other restrictions (list coloring, bounded maximum average degree, degree bounds). As a main result, we derive that given an $n$-vertex graph with maximum degree $\Delta$, the $\Delta$-colorings are all equivalent up to $O(n^2)$ Kempe changes, unless $\Delta = 3$ and some connected component is a 3-prism.
翻译:我们考虑Kempe 在以美元为顶点的图表上以美元为单位的颜色变化。 如果该图表是美元(k-1)美元, 那么所有美元- 美元- 彩色都相当于Kempe的变化。 但是, 从证据中产生的两个美元- 彩色的顺序可能指数化的脊椎数。 一个令人好奇的问题是, 它能否成为多元值。 我们证明这是可能的, 假设这个更强烈的假设是, 图表的树枝以美元- 1美元为单位。 也就是说, 任何两个美元- 彩色都相当于美元( kn) 2, Kempe 的颜色。 我们调查其他限制( 列出彩色、 约束最大平均度、 度界限) 。 作为主要结果, 我们推断, 如果以美元为单位的顶值为$\ Delta $, $\ Delta $- 彩色都相当于$( n%2) 。 除非 $\\ Delta = 3 和 一些连接的部件 3, prisma 3 3 and some contimmam 3