Let $r \geq 2$, $n$ and $k$ be integers satisfying $k \leq \frac{r-1}{r}n$. In the original arXiv version of this note we suggested a conjecture that the family of all $k$-subsets of an $n$-set cannot be partitioned into fewer than $\lceil n-\frac{r}{r-1}(k-1) \rceil$ $r$-wise intersecting families. We noted that if true this is tight for all values of the parameters, that the case $r=2$ is Kneser's conjecture, proved by Lov\'asz, and observed that the assertion also holds provided $r$ is either a prime number or a power of $2$. We have recently learned, however, that the assertion of the conjecture for all values of the parameters follows from a recent result of Azarpendar and Jafari \cite{AJ}.
翻译:让 $\ geq 2 $, $n 和 $k$ 整数满足 $\ leq\ frac{r-1\ r-1\ r} 美元。 在本说明原版的 Arxiv 中, 我们提出一个假设, 假设所有美元子集的美元组合不能分割成低于 $lcel n\ frac{r\ r} (k-1)\ rcele$ 和 rcele$ 。 我们注意到, 如果对参数的所有值来说, 美元= 2 美元是紧凑的, 案件是 Kneser 的猜想, Lov\ asz 证明了这一点, 并且指出, 声明也提供美元, 要么是原始数, 要么是2美元的力量。 然而, 我们最近了解到, 参数所有参数的参数的参数的参数的参数的参数参数的参数的参数的参数根据 Azarpendar 和 Jafari\ cite} 。