One of the challenges of full autonomy is to have a robot capable of manipulating its current environment to achieve another environment configuration. This paper is a step towards this challenge, focusing on the visual understanding of the task. Our approach trains a deep neural network to represent images as measurable features that are useful to estimate the progress (or phase) of a task. The training uses numerous variations of images of identical tasks when taken under the same phase index. The goal is to make the network sensitive to differences in task progress but insensitive to the appearance of the images. To this end, our method builds upon Time-Contrastive Networks (TCNs) to train a network using only discrete snapshots taken at different stages of a task. A robot can then solve long-horizon tasks by using the trained network to identify the progress of the current task and by iteratively calling a motion planner until the task is solved. We quantify the granularity achieved by the network in two simulated environments. In the first, to detect the number of objects in a scene and in the second to measure the volume of particles in a cup. Our experiments leverage this granularity to make a mobile robot move a desired number of objects into a storage area and to control the amount of pouring in a cup.


翻译:完全自主的挑战之一是拥有一个能够操纵当前环境的机器人来实现另一个环境配置。 本文是朝这个挑战迈出的一步, 重点是对任务的理解。 我们的方法是训练一个深神经网络, 将图像作为可测量的特征来显示任务的进展( 或阶段) 。 培训使用许多不同任务相同的图像, 当在同一阶段指数下拍摄时, 目标是让网络对任务进展的差异有敏感感, 但对图像的外观不敏感。 为此, 我们的方法建立在时间- 调试网络( TCNs) 上, 来训练一个网络, 仅使用在不同任务阶段拍摄的离散快照来训练网络 。 然后, 一个机器人可以使用经过训练的网络来解析长期同步任务, 用来确定当前任务的进展, 在任务解决之前反复调用一个运动规划器。 我们量化了网络在两个模拟环境中取得的颗粒性。 首先, 检测场景和第二端的物体数量, 以测量杯中粒子的数量。 我们的实验将这种颗粒带作为杠杆, 使一个移动机器人的容器区域移动控制数量。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Arxiv
5+阅读 · 2018年10月4日
Viewpoint Estimation-Insights & Model
Arxiv
3+阅读 · 2018年7月3日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
Top
微信扫码咨询专知VIP会员