We introduce a new sparse sliced inverse regression estimator called Cholesky matrix penalization and its adaptive version for achieving sparsity in estimating the dimensions of the central subspace. The new estimators use the Cholesky decomposition of the covariance matrix of the covariates and include a regularization term in the objective function to achieve sparsity in a computationally efficient manner. We establish the theoretical values of the tuning parameters that achieve estimation and variable selection consistency for the central subspace. Furthermore, we propose a new projection information criterion to select the tuning parameter for our proposed estimators and prove that the new criterion facilitates selection consistency. The Cholesky matrix penalization estimator inherits the strength of the Matrix Lasso and the Lasso sliced inverse regression estimator; it has superior performance in numerical studies and can be adapted to other sufficient dimension methods in the literature.
翻译:我们引入了一个新的稀薄的反向回归测深器,称为Ccholesky 矩阵处罚及其适应性版本,用于在估计中央子空间的尺寸时实现宽度。新的测深器使用共变体共变量矩阵的Cholesky分解法,并在目标函数中加入一个正规化术语,以便以计算效率的方式实现宽度。我们建立了调深参数的理论值,从而实现中央子空间的估计和可变选择一致性。此外,我们提出了一个新的预测信息标准,以选择我们提议的估测器的调控参数,并证明新标准有利于选择的一致性。Cholesky 矩阵处罚测深器继承了Lasso母体和Lasso切片反向回归测深仪的强度;它在数字研究中表现优异,可以适应文献中的其他足够维度方法。