We propose a spatial calibration method for wide Field-of-View (FoV) Near-Eye Displays (NEDs) with complex image distortions. Image distortions in NEDs can destroy the reality of the virtual object and cause sickness. To achieve distortion-free images in NEDs, it is necessary to establish a pixel-by-pixel correspondence between the viewpoint and the displayed image. Designing compact and wide-FoV NEDs requires complex optical designs. In such designs, the displayed images are subject to gaze-contingent, non-linear geometric distortions, which explicit geometric models can be difficult to represent or computationally intensive to optimize. To solve these problems, we propose Neural Distortion Field (NDF), a fully-connected deep neural network that implicitly represents display surfaces complexly distorted in spaces. NDF takes spatial position and gaze direction as input and outputs the display pixel coordinate and its intensity as perceived in the input gaze direction. We synthesize the distortion map from a novel viewpoint by querying points on the ray from the viewpoint and computing a weighted sum to project output display coordinates into an image. Experiments showed that NDF calibrates an augmented reality NED with 90$^{\circ}$ FoV with about 3.23 pixel (5.8 arcmin) median error using only 8 training viewpoints. Additionally, we confirmed that NDF calibrates more accurately than the non-linear polynomial fitting, especially around the center of the FoV.
翻译:我们建议对广视场(FoV)近Eye显示(NEDs)进行空间校准方法。 NED的图像扭曲可能破坏虚拟对象的现实,并导致疾病。为了在 NEDs 中实现无扭曲图像。为了在视图和显示的图像之间建立无扭曲的像像素,我们需要在视图和显示的图像之间建立像素-逐像素的对应。设计紧凑和宽频-FoV NEDs需要复杂的光学设计。在这种设计中,显示的图像会受到视线、非线性地球学扭曲的影响,而清晰的几何模型可能难以代表或计算中心优化。为了解决这些问题,我们建议神经扭曲场(NDF),这是一个完全连接的深神经网络,暗含显示空间中复杂扭曲的表面。NDFS将空间位置和视视向方向作为输入和输出,在输入的瞄准方向中,显示显示扭曲的地图,我们从新视角的角度对图像进行校正的点进行综合,并计算出一个精确的数值和精确的数值,特别是不精确的NVDF值,将一个不精确的VDF值的值的值值值值值值值显示一个比RIF的校正的校正的图像。