Suppose we have a black-box function (e.g., deep neural network) that takes an image as input and outputs a value that indicates preference. How can we retrieve optimal images with respect to this function from an external database on the Internet? Standard retrieval problems in the literature (e.g., item recommendations) assume that an algorithm has full access to the set of items. In other words, such algorithms are designed for service providers. In this paper, we consider the retrieval problem under different assumptions. Specifically, we consider how users with limited access to an image database can retrieve images using their own black-box functions. This formulation enables a flexible and finer-grained image search defined by each user. We assume the user can access the database through a search query with tight API limits. Therefore, a user needs to efficiently retrieve optimal images in terms of the number of queries. We propose an efficient retrieval algorithm Tiara for this problem. In the experiments, we confirm that our proposed method performs better than several baselines under various settings.
翻译:假设我们有一个黑箱功能( 例如深神经网络), 将图像作为输入和输出值, 表示偏好。 我们怎样才能从互联网上的外部数据库获取关于此功能的最佳图像? 文献的标准检索问题( 例如项目建议) 假设算法可以完全访问这组项目。 换句话说, 这种算法是为服务供应商设计的。 在本文中, 我们考虑不同假设下的检索问题。 具体地说, 我们考虑使用图像数据库有限用户如何使用自己的黑箱功能检索图像。 这种配方可以让每个用户定义灵活和精细的图像搜索。 我们假设用户可以通过一个有严格限制的API限制的搜索查询访问数据库。 因此, 用户需要高效率地从查询数量上检索最佳图像。 我们为此提出一个高效的检索算法 。 在实验中, 我们确认我们建议的方法在各种环境下比几个基线要好。