Domain adaptation (DA) aims to transfer knowledge from a label-rich but heterogeneous domain to a label-scare domain, which alleviates the labeling efforts and attracts considerable attention. Different from previous methods focusing on learning domain-invariant feature representations, some recent methods present generic semi-supervised learning (SSL) techniques and directly apply them to DA tasks, even achieving competitive performance. One of the most popular SSL techniques is pseudo-labeling that assigns pseudo labels for each unlabeled data via the classifier trained by labeled data. However, it ignores the distribution shift in DA problems and is inevitably biased to source data. To address this issue, we propose a new pseudo-labeling framework called Auxiliary Target Domain-Oriented Classifier (ATDOC). ATDOC alleviates the classifier bias by introducing an auxiliary classifier for target data only, to improve the quality of pseudo labels. Specifically, we employ the memory mechanism and develop two types of non-parametric classifiers, i.e. the nearest centroid classifier and neighborhood aggregation, without introducing any additional network parameters. Despite its simplicity in a pseudo classification objective, ATDOC with neighborhood aggregation significantly outperforms domain alignment techniques and prior SSL techniques on a large variety of DA benchmarks and even scare-labeled SSL tasks.


翻译:域适应 (DA) 旨在将知识从一个标签丰富但多样化的领域转移到一个标签保护领域,从而减轻标签工作,吸引相当的注意力。不同于以往侧重于学习域变量特征表现的方法,最近一些方法提供了通用的半监督学习(SSL)技术,直接应用于指定任务,甚至实现竞争性性能。最流行的SSL技术之一是假标签,通过标签数据培训的分类器为每个未标签数据指定假标签。然而,它忽视了DA问题的分布变化,不可避免地偏向于源数据。为了解决这一问题,我们提出了一个新的假标签框架,称为Asuidily target Domain-Orided分类仪(ATDOC)。ATDOC通过引入目标数据辅助分类器来减轻分类的偏差。具体来说,我们采用记忆机制,并开发了两类非参数,即最近的非参数分类器分类器和邻里聚合器,而没有引入任何额外的网络参数。尽管在SASL 大型类分类上采用了一个简单性域级的SAR-tailal标准,但在SL 大规模的域级分类上,在SASL 目标上也采用了一个简单化的大规模的SL 。

0
下载
关闭预览

相关内容

【KDD2020】 半监督迁移协同过滤推荐
专知会员服务
19+阅读 · 2020年10月21日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【资源】领域自适应相关论文、代码分享
专知
30+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
VIP会员
相关资讯
【资源】领域自适应相关论文、代码分享
专知
30+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
Top
微信扫码咨询专知VIP会员