Energy modelling can enable energy-aware software development and assist the developer in meeting an application's energy budget. Although many energy models for embedded processors exist, most do not account for processor-specific configurations, neither are they suitable for static energy consumption estimation. This paper introduces a set of comprehensive energy models for Arm's Cortex-M0 processor, ready to support energy-aware development of edge computing applications using either profiling- or static-analysis-based energy consumption estimation. We use a commercially representative physical platform together with a custom modified Instruction Set Simulator to obtain the physical data and system state markers used to generate the models. The models account for different processor configurations which all have a significant impact on the execution time and energy consumption of edge computing applications. Unlike existing works, which target a very limited set of applications, all developed models are generated and validated using a very wide range of benchmarks from a variety of emerging IoT application areas, including machine learning and have a prediction error of less than 5%.
翻译:虽然存在许多嵌入处理器的能源模型,但大多数不考虑加工器的具体配置,也不适合静态能源消耗估计。本文为Arm的Cortex-M0处理器引入了一套综合能源模型,准备支持利用剖析或静态分析能源消耗估计法开发边缘计算应用的能源智能模型。我们使用商业上具有代表性的物理平台和定制修改过的指令设置模拟器获取用于生成模型的物理数据和系统状态标记。不同的处理器配置模型都对边缘计算应用程序的执行时间和能源消耗产生重大影响。与针对非常有限的一系列应用的现有工程不同,所有已开发的模型都是利用来自新兴的IoT应用领域的非常广泛的基准生成和验证的,包括机器学习,预测误差不足5%。