Academic administrators and funding agencies must predict the publication productivity of research groups and individuals to assess authors' abilities. However, such prediction remains an elusive task due to the randomness of individual research and the diversity of authors' productivity patterns. We applied two kinds of approaches to this prediction task: deep neural network learning and model-based approaches. We found that a neural network cannot give a good long-term prediction for groups, while the model-based approaches cannot provide short-term predictions for individuals. We proposed a model that integrates the advantages of both data-driven and model-based approaches, and the effectiveness of this method was validated by applying it to a high-quality dblp dataset, demonstrating that the proposed model outperforms the tested data-driven and model-based approaches.
翻译:学术管理人员和供资机构必须预测研究团体和个人的出版生产率,以评估作者的能力;然而,由于个别研究随机性以及作者生产力模式的多样性,这种预测仍是一项难以完成的任务。我们对这一预测任务采用了两种方法:深神经网络学习和基于模型的方法。我们发现神经网络不能为群体提供良好的长期预测,而基于模型的方法不能为个人提供短期预测。我们提出了一个将数据驱动和基于模型的方法的优势结合起来的模式,通过将这种方法应用于高质量的 dblp 数据集来验证这一方法的有效性,表明拟议的模型超过了经过测试的数据驱动和基于模型的方法。