As a popular machine learning method, neural networks can be used to solve many complex tasks. Their strong generalization ability comes from the representation ability of the basic neuron model. The most popular neuron is the MP neuron, which uses a linear transformation and a non-linear activation function to process the input successively. Inspired by the elastic collision model in physics, we propose a new neuron model that can represent more complex distributions. We term it Inter-layer collision (IC) neuron. The IC neuron divides the input space into multiple subspaces used to represent different linear transformations. This operation enhanced non-linear representation ability and emphasizes some useful input features for the given task. We build the IC networks by integrating the IC neurons into the fully-connected (FC), convolutional, and recurrent structures. The IC networks outperform the traditional networks in a wide range of experiments. We believe that the IC neuron can be a basic unit to build network structures.
翻译:作为流行的机器学习方法,神经网络可以用来解决许多复杂的任务。它们强大的一般化能力来自基本神经模型的代表性能力。最受欢迎的神经元是MP神经元,它使用线性变换和非线性激活功能来连续处理输入。在物理学弹性碰撞模型的启发下,我们提出了一个新的神经元模型,它可以代表更复杂的分布。我们把它称为跨层碰撞神经元。IC神经元将输入空间分成多个子空间,用来代表不同的线性变换。这个操作加强了非线性变换能力,并强调了特定任务的一些有用的输入特征。我们通过将IC神经元融入完全相连的(FC)、共变和循环结构来建立IC网络。IC网络在广泛的实验中超越了传统网络。我们相信IC神经元可以成为建立网络结构的基本单位。