We present a distributed optimization protocol that preserves statistical privacy of agents' local cost functions against a passive adversary that corrupts some agents in the network. The protocol is a composition of a distributed ``{\em zero-sum}" obfuscation protocol that obfuscates the agents' local cost functions, and a standard non-private distributed optimization method. We show that our protocol protects the statistical privacy of the agents' local cost functions against a passive adversary that corrupts up to $t$ arbitrary agents as long as the communication network has $(t+1)$-vertex connectivity. The ``{\em zero-sum}" obfuscation protocol preserves the sum of the agents' local cost functions and therefore ensures accuracy of the computed solution.
翻译:我们提出了一个分布式优化协议,保护代理商当地成本功能的统计隐私,以对抗腐蚀网络中某些代理商的被动对手。协议是由一个分布式的“eem e0-sum”和“obfiscation”协议组成的,它模糊了代理商的当地成本功能,并且是一种标准的非私人分布式优化方法。我们表明,我们的协议保护代理商当地成本功能的统计隐私,反对一个腐蚀高达1美元任意代理商的被动对手,只要通信网络有(t+1)$-verversex连接。“em0-sum}”的模糊协议保存了代理商当地成本功能的总和,从而确保计算解决方案的准确性。