Edge computing and distributed machine learning have advanced to a level that can revolutionize a particular organization. Distributed devices such as the Internet of Things (IoT) often produce a large amount of data, eventually resulting in big data that can be vital in uncovering hidden patterns, and other insights in numerous fields such as healthcare, banking, and policing. Data related to areas such as healthcare and banking can contain potentially sensitive data that can become public if they are not appropriately sanitized. Federated learning (FedML) is a recently developed distributed machine learning (DML) approach that tries to preserve privacy by bringing the learning of an ML model to data owners'. However, literature shows different attack methods such as membership inference that exploit the vulnerabilities of ML models as well as the coordinating servers to retrieve private data. Hence, FedML needs additional measures to guarantee data privacy. Furthermore, big data often requires more resources than available in a standard computer. This paper addresses these issues by proposing a distributed perturbation algorithm named as DISTPAB, for privacy preservation of horizontally partitioned data. DISTPAB alleviates computational bottlenecks by distributing the task of privacy preservation utilizing the asymmetry of resources of a distributed environment, which can have resource-constrained devices as well as high-performance computers. Experiments show that DISTPAB provides high accuracy, high efficiency, high scalability, and high attack resistance. Further experiments on privacy-preserving FedML show that DISTPAB is an excellent solution to stop privacy leaks in DML while preserving high data utility.


翻译:远程计算和分布式机器学习已发展到可以使某个组织发生革命性的地步。诸如物的互联网(IoT)等分布式机器学习等设备往往产生大量数据,最终导致在发现隐藏模式方面至关重要的海量数据,以及在保健、银行和警务等许多领域的其他洞察力。与保健和银行等领域有关的数据可能包含敏感数据,如果数据不适当保持清洁,这些数据可能公开;联邦学习(FedML)是一种最近开发的分布式机器学习(DML)方法,试图通过将ML模型的学习带给数据所有者来保护隐私。然而,文献显示不同的攻击方法,例如会籍推断利用ML模型的脆弱性以及协调服务器检索私人数据。因此,FedML需要更多措施来保障数据隐私。此外,大数据往往需要比标准计算机中现有的更多资源。本文件通过建议一种名为DISTPABABAB的更分散式的透视线算法来保护横向隔断数据的隐私。DISTPAB通过分配高保密性保密性、高性保密性精确性工具的计算瓶颈瓶颈,同时将高性数据存储高性存储高性、高性数据库显示高性数据效率。

0
下载
关闭预览

相关内容

分布式机器学习研究将具有大规模数据量和计算量的任务分布式地部署到多台机器上,其核心思想在于“分而治之”,有效提高了大规模数据计算的速度并节省了开销。
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
145+阅读 · 2019年10月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员