We present a provenance model for the generic workflow of numerical Lattice Quantum Chromodynamics (QCD) calculations, which constitute an important component of particle physics research. These calculations are carried out on the largest supercomputers worldwide with data in the multi-PetaByte range being generated and analyzed. In the Lattice QCD community, a custom metadata standard (QCDml) that includes certain provenance information already exists for one part of the workflow, the so-called generation of configurations. In this paper, we follow the W3C PROV standard and formulate a provenance model that includes both the generation part and the so-called measurement part of the Lattice QCD workflow. We demonstrate the applicability of this model and show how the model can be used to answer some provenance-related research questions. However, many important provenance questions in the Lattice QCD community require extensions of this provenance model. To this end, we propose a multi-layered provenance approach that combines prospective and retrospective elements.


翻译:我们提出了一个溯源模型,适用于数值量子色动力学(QCD)计算的通用工作流程,这些计算是粒子物理研究的重要组成部分。这些计算在世界上最大的超级计算机上进行,生成和分析的数据量是多 PB 级别的。在量子色动力学社区中,已经存在一个自定义元数据标准(QCDml),其中包括某些溯源信息,适用于一部分工作流程,即所谓的构型生成。在本文中,我们遵循 W3C PROV 标准,并制定了一个溯源模型,包括量子色动力学工作流程的生成和测量部分。我们演示了该模型的适用性,并展示了该模型如何用于回答一些与溯源相关的研究问题。然而,量子色动力学社区中许多重要的溯源问题需要扩展此溯源模型。为此,我们提出了多层溯源方法,结合了预测性和回溯性元素。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【2023新书】随机模型基础,815页pdf
专知会员服务
102+阅读 · 2023年5月10日
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
129+阅读 · 2023年1月29日
【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
42+阅读 · 2021年4月7日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月11日
Arxiv
15+阅读 · 2022年1月24日
Arxiv
24+阅读 · 2021年1月25日
VIP会员
相关VIP内容
【2023新书】随机模型基础,815页pdf
专知会员服务
102+阅读 · 2023年5月10日
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
129+阅读 · 2023年1月29日
【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
【干货书】面向计算科学和工程的Python导论,167页pdf
专知会员服务
42+阅读 · 2021年4月7日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员