In a realistic wireless environment, the multi-antenna channel usually exhibits spatially correlation fading. This is more emphasized when a large number of antennas is densely deployed, known as holographic massive MIMO (multiple-input multiple-output). In the first part of this letter, we develop a channel model for holographic massive MIMO by considering both non-isotropic scattering and directive antennas. With a large number of antennas, it is difficult to obtain full knowledge of the spatial correlation matrix. In this case, channel estimation is conventionally done using the least-squares (LS) estimator that requires no prior information of the channel statistics or array geometry. In the second part of this letter, we propose a novel channel estimation scheme that exploits the array geometry to identify a subspace of reduced rank that covers the eigenspace of any spatial correlation matrix. The proposed estimator outperforms the LS estimator, without using any user-specific channel statistics.
翻译:在现实的无线环境中,多antenna频道通常在空间相关性矩阵上出现衰落。当大量天线被密集部署,称为全息大规模百万兆米(多输出多输出多输出)。在本信的第一部分,我们开发了全息大规模百万兆米的频道模型,既考虑非同位素散射,又考虑指示天线。由于天线数量众多,很难获得对空间相关性矩阵的充分知识。在这种情况下,频道估算通常使用最不平方的天体估计仪,不需要事先提供频道统计数据或阵列几何学信息。在本信的第二部分,我们建议采用新的频道估算方案,利用阵列几何方法确定一个缩小级别、涵盖任何空间相关矩阵的空气空间空间空间的子空间。提议的测算仪超越了LS天体的测算仪,而没有使用任何特定的频道统计数据。