While deep neural networks can attain good accuracy on in-distribution test points, many applications require robustness even in the face of unexpected perturbations in the input, changes in the domain, or other sources of distribution shift. We study the problem of test time robustification, i.e., using the test input to improve model robustness. Recent prior works have proposed methods for test time adaptation, however, they each introduce additional assumptions, such as access to multiple test points, that prevent widespread adoption. In this work, we aim to study and devise methods that make no assumptions about the model training process and are broadly applicable at test time. We propose a simple approach that can be used in any test setting where the model is probabilistic and adaptable: when presented with a test example, perform different data augmentations on the data point, and then adapt (all of) the model parameters by minimizing the entropy of the model's average, or marginal, output distribution across the augmentations. Intuitively, this objective encourages the model to make the same prediction across different augmentations, thus enforcing the invariances encoded in these augmentations, while also maintaining confidence in its predictions. In our experiments, we demonstrate that this approach consistently improves robust ResNet and vision transformer models, achieving accuracy gains of 1-8% over standard model evaluation and also generally outperforming prior augmentation and adaptation strategies. We achieve state-of-the-art results for test shifts caused by image corruptions (ImageNet-C), renditions of common objects (ImageNet-R), and, among ResNet-50 models, adversarially chosen natural examples (ImageNet-A).


翻译:虽然深心神经网络可以在分布测试点上达到准确度,但许多应用程序要求网络网络的稳健性,即便在投入、域的变化或其他分布变化源出现意外干扰的情况下也是如此。我们研究了测试时间稳健性的问题,即利用测试投入提高模型的稳健性。最近的工作提出了测试时间适应性的方法,但是,它们都提出了额外的假设,例如进入多个测试点,从而阻止广泛采用。在这项工作中,我们的目标是研究和设计一些方法,这些方法对模型培训进程不作任何假设,而且在测试时间广泛适用。我们提出了一种简单的方法,可用于模型具有概率性和适应性的任何测试设置。我们研究了时间稳健性的问题,即使用测试输入投入来提高模型的稳健性投入,然后通过最大限度地减少模型平均值的灵敏度或边缘性产出分布来修改模型参数。这个目标鼓励模型在不同增益中作出同样的预测,从而在测试时间上广泛适用。我们提出了一种简单的模型,这些模型的易变换模型,同时持续地展示了我们先前的测试结果。

0
下载
关闭预览

相关内容

【MIT】硬负样本的对比学习
专知会员服务
39+阅读 · 2020年10月14日
专知会员服务
39+阅读 · 2020年9月6日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月14日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
7+阅读 · 2018年6月8日
VIP会员
相关VIP内容
【MIT】硬负样本的对比学习
专知会员服务
39+阅读 · 2020年10月14日
专知会员服务
39+阅读 · 2020年9月6日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员