In recent years, significant advancements have been made in the text generation capabilities of Large Language Models (LLMs), demonstrating exceptional performance in downstream tasks such as abstract summarization, dialogue generation, and data-to-text conversion. However, their generative abilities also pose risks such as the rapid spread of fake news, infringement of datasets/LLM copyrights, and challenges to academic integrity. Text watermarking technology emerges as a potential solution. By embedding invisible yet detectable patterns in generated texts, it helps in tracking and verifying text origins, thus preventing misuse and piracy. This survey aims to comprehensively summarize current text watermarking technologies, covering three main aspects: (1) an overview and comparison of different text watermarking techniques; (2) evaluation methods for text watermarking algorithms, including their success rate, impact on text quality, robustness, and unforgeability; (3) potential applications of text watermarking technologys. This survey aims to help researchers thoroughly understanding the text watermarking technologies, thereby fostering further development.
翻译:暂无翻译