The full-span log-linear(FSLL) model introduced in this paper is considered an $n$-th order Boltzmann machine, where $n$ is the number of all variables in the target system. Let $X=(X_0,...,X_{n-1})$ be finite discrete random variables that can take $|X|=|X_0|...|X_{n-1}|$ different values. The FSLL model has $|X|-1$ parameters and can represent arbitrary positive distributions of $X$. The FSLL model is a "highest-order" Boltzmann machine; nevertheless, we can compute the dual parameters of the model distribution, which plays important roles in exponential families, in $O(|X|\log|X|)$ time. Furthermore, using properties of the dual parameters of the FSLL model, we can construct an efficient learning algorithm. The FSLL model is limited to small probabilistic models up to $|X|\approx2^{25}$; however, in this problem domain, the FSLL model flexibly fits various true distributions underlying the training data without any hyperparameter tuning. The experiments presented that the FSLL successfully learned six training datasets such that $|X|=2^{20}$ within one minute with a laptop PC.
翻译:本文中引入的完整 span log-linear (FSLL) 模式被视为 美元级的 Boltzmann 机器, 其中美元是目标系统中所有变量的数量。 让 $X = (X_ 0,..., X ⁇ n-1}) 美元成为有限离散随机变量, 可以使用 $X*X X_ 0 ⁇... ⁇ X ⁇ n-1 ⁇ 美元的不同值。 FSLL 模式有 $X = 1 的参数, 可以任意代表 $X $的正分布。 FSLL 模式是一个“ 最高顺序 ” Boltzmann 机器; 然而, 我们可以计算模型分布的双重参数, 该模型在指数序列中扮演重要角色。 此外, 使用 FSLLL 模型的双重参数属性, 我们可以构建一个有效的学习算法。 FSLL 模型仅限于小的概率模型, 最高为 $ $X = 20 美元; 然而, 在这个问题域中, FSLLL 模型可以灵活配置各种真实分布模型, 。