We present a novel decision tree-based synthesis algorithm of ranking functions for verifying program termination. Our algorithm is integrated into the workflow of CounterExample Guided Inductive Synthesis (CEGIS). CEGIS is an iterative learning model where, at each iteration, (1) a synthesizer synthesizes a candidate solution from the current examples, and (2) a validator accepts the candidate solution if it is correct, or rejects it providing counterexamples as part of the next examples. Our main novelty is in the design of a synthesizer: building on top of a usual decision tree learning algorithm, our algorithm detects cycles in a set of example transitions and uses them for refining decision trees. We have implemented the proposed method and obtained promising experimental results on existing benchmark sets of (non-)termination verification problems that require synthesis of piecewise-defined lexicographic affine ranking functions.


翻译:我们提出了一个用于核实程序终止的排序函数的新型基于决定的树合成算法。我们的算法被纳入了反抽样引导感化合成(CEGIS)的工作流程中。 CEGIS是一个反复学习模式,在每次迭代中,1个合成器综合了当前实例中的一种候选解决方案,2个验证器接受候选解决方案,如果它正确的话,或者拒绝作为下一个实例提供反例。我们的主要新颖之处在于设计一个合成器:在通常的决策树学习算法的基础上,我们的算法在一系列样板转换中检测周期并利用这些循环来精炼决定树。我们实施了拟议方法,并在现有的基准(非)定界核查问题上取得了有希望的实验结果,这需要综合精密定义的词谱缩线排序功能。

0
下载
关闭预览

相关内容

决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy = 系统的凌乱程度,使用算法ID3, C4.5和C5.0生成树算法使用熵。这一度量是基于信息学理论中熵的概念。 决策树是一种树形结构,其中每个内部节点表示一个属性上的测试,每个分支代表一个测试输出,每个叶节点代表一种类别。 分类树(决策树)是一种十分常用的分类方法。他是一种监管学习,所谓监管学习就是给定一堆样本,每个样本都有一组属性和一个类别,这些类别是事先确定的,那么通过学习得到一个分类器,这个分类器能够对新出现的对象给出正确的分类。这样的机器学习就被称之为监督学习。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
多标签学习的新趋势(2020 Survey)
专知会员服务
41+阅读 · 2020年12月6日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年8月4日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
7+阅读 · 2019年5月31日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年8月4日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
4+阅读 · 2021年4月13日
Arxiv
7+阅读 · 2019年5月31日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Top
微信扫码咨询专知VIP会员