We propose TAL-Net, an improved approach to temporal action localization in video that is inspired by the Faster R-CNN object detection framework. TAL-Net addresses three key shortcomings of existing approaches: (1) we improve receptive field alignment using a multi-scale architecture that can accommodate extreme variation in action durations; (2) we better exploit the temporal context of actions for both proposal generation and action classification by appropriately extending receptive fields; and (3) we explicitly consider multi-stream feature fusion and demonstrate that fusing motion late is important. We achieve state-of-the-art performance for both action proposal and localization on THUMOS'14 detection benchmark and competitive performance on ActivityNet challenge.
翻译:我们提议TAL-Net,这是在快速R-CNN物体探测框架的启发下改进视频时间行动定位的方法,TAL-Net处理现有方法的三个主要缺点:(1) 我们采用能够适应行动持续时间极端变化的多尺度结构,改进可接受性实地定位;(2) 我们通过适当扩展可接受性字段,更好地利用行动的时间背景,以生成建议和行动分类;(3) 我们明确考虑多流特性融合,并表明延迟启动运动很重要。 我们取得了THUMOS'14探测基准方面的最先进的行动绩效和活动网挑战方面的最先进的实绩和竞争性绩效。