Recent advances in deep learning have made the use of large, deep neural networks with tens of millions of parameters. The sheer size of these networks imposes a challenging computational burden during inference. Existing work focuses primarily on accelerating each forward pass of a neural network. Inspired by the group testing strategy for efficient disease testing, we propose neural group testing, which accelerates by testing a group of samples in one forward pass. Groups of samples that test negative are ruled out. If a group tests positive, samples in that group are then retested adaptively. A key challenge of neural group testing is to modify a deep neural network so that it could test multiple samples in one forward pass. We propose three designs to achieve this without introducing any new parameters and evaluate their performances. We applied neural group testing in an image moderation task to detect rare but inappropriate images. We found that neural group testing can group up to 16 images in one forward pass and reduce the overall computation cost by over 73% while improving detection performance.
翻译:最近深层学习的进展使得使用具有数千万参数的大型深层神经网络成为了近代深层神经网络。这些网络的庞大规模在推论过程中带来了具有挑战性的计算负担。现有工作主要侧重于加速神经网络的每一个前端。在高效疾病测试的小组测试战略的启发下,我们提议进行神经组测试,通过在一个前端测试一组样本加速测试。测试为阴性的一组样本被排除。如果一个组测试为阳性的,则该组的样本将进行再适应性测试。神经组测试的一个关键挑战是修改一个深层神经网络,以便它能够在一个前端测试多个样本。我们提出三种设计,以便在不引入任何新参数并评估其性能的情况下实现这一目标。我们应用神经组测试在一个图像中度任务中进行,以检测稀有但不适当的图像。我们发现,神经组测试可以将一个前端通过的16个图像组合,并在改善检测性能的同时将总计算成本降低73%以上。