High-dimensional asymptotics have been shown to be useful to derive tuning rules for finding the optimal scaling in random walk Metropolis algorithms. The assumptions under which weak convergence results are proved are however restrictive; the target density is typically assumed to be of a product form. Users may thus doubt the validity of such tuning rules in practical applications. In this paper, we shed some light on optimal scaling problems from a different perspective, namely a large-sample one. This allows to prove weak convergence results under realistic assumptions and to propose novel parameter dimension dependent tuning guidelines. The proposed guidelines are consistent with previous ones when the target density is close to having a product form, but significantly different when this is not the case.


翻译:事实证明,高维的随机大都会运算法中,高维的设置有助于制定调整规则,以找到最佳缩放,但证明趋同效果薄弱的假设是限制性的;目标密度一般被认为是一种产品形式;因此,用户可能怀疑这种调控规则在实际应用中的有效性;在本文中,我们从不同的角度,即大抽样的角度,对最佳缩放问题作了一些说明。这样就可以证明现实假设下的趋同效果不力,并提出新的参数维度依赖调控准则。在目标密度接近于产品形式时,拟议准则与以前的准则是一致的,但在情况并非如此时,则大相径庭。

0
下载
关闭预览

相关内容

在数学中,随机漫步是一种数学对象,称为随机过程或随机过程,它描述的路径由在某些数学空间(例如整数)上的一系列随机步骤组成。随机行走等是指基于过去的表现,无法预测将来的发展步骤和方向。核心概念是指任何无规则行走者所带的守恒量都各自对应着一个扩散运输定律 ,接近于布朗运动,是布朗运动理想的数学状态,现阶段主要应用于互联网链接分析及金融股票市场中。
专知会员服务
51+阅读 · 2020年12月14日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
92+阅读 · 2020年10月22日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
已删除
将门创投
5+阅读 · 2019年4月29日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员