We consider the setting of vector valued non-linear dynamical systems $X_{t+1} = \phi(A^* X_t) + \eta_t$, where $\eta_t$ is unbiased noise and $\phi : \mathbb{R} \to \mathbb{R}$ is a known link function that satisfies certain {\em expansivity property}. The goal is to learn $A^*$ from a single trajectory $X_1,\cdots,X_T$ of {\em dependent or correlated} samples. While the problem is well-studied in the linear case, where $\phi$ is identity, with optimal error rates even for non-mixing systems, existing results in the non-linear case hold only for mixing systems. In this work, we improve existing results for learning nonlinear systems in a number of ways: a) we provide the first offline algorithm that can learn non-linear dynamical systems without the mixing assumption, b) we significantly improve upon the sample complexity of existing results for mixing systems, c) in the much harder one-pass, streaming setting we study a SGD with Reverse Experience Replay ($\mathsf{SGD-RER}$) method, and demonstrate that for mixing systems, it achieves the same sample complexity as our offline algorithm, d) we justify the expansivity assumption by showing that for the popular ReLU link function -- a non-expansive but easy to learn link function with i.i.d. samples -- any method would require exponentially many samples (with respect to dimension of $X_t$) from the dynamical system. We validate our results via. simulations and demonstrate that a naive application of SGD can be highly sub-optimal. Indeed, our work demonstrates that for correlated data, specialized methods designed for the dependency structure in data can significantly outperform standard SGD based methods.


翻译:我们认为设定矢量值的非线性动态系统 $X+1} =\phi(A ⁇ X_t) +\eta_t$ +\eta_t$, $\eta_t$是公正的噪音, $phi:\mathbb{R}\to\mathbb{R} 到\mathbb{R} 美元是一个已知的链接功能, 满足某些 {em 扩展属性} 。 目标是从单一轨道 $X_ 1,\cdots, X_T$ =美元, =美元依赖或关联} 样本 =\phi(A_xxxxx) +\\\\ a\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
0+阅读 · 2021年7月26日
Arxiv
0+阅读 · 2021年7月26日
VIP会员
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员