Previous works show convergence of rational Chebyshev approximants to the Pad\'e approximant as the underlying domain of approximation shrinks to the origin. In the present work, the asymptotic error and interpolation properties of rational Chebyshev approximants are studied in such settings. Namely, the point-wise error of Chebyshev approximants is shown to approach a Chebyshev polynomial multiplied by the asymptotically leading order term of the error of the Pad\'e approximant, and similar results hold true for the uniform error and Chebyshev constants. Moreover, rational Chebyshev approximants are shown to attain interpolation nodes which approach scaled Chebyshev nodes in the limit. Main results are formulated for interpolatory best approximations and apply for complex Chebyshev approximation as well as real Chebyshev approximation to real functions and unitary best approximation to the exponential function.
翻译:暂无翻译