We introduce a new class of real-valued monotones in preordered spaces, injective monotones. We show that the class of preorders for which they exist lies in between the class of preorders with strict monotones and preorders with countable multi-utilities, improving upon the known classification of preordered spaces through real-valued monotones. We extend several well-known results for strict monotones (Richter-Peleg functions) to injective monotones, we provide a construction of injective monotones from countable multi-utilities, and relate injective monotones to classic results concerning Debreu denseness and order separability. Along the way, we connect our results to Shannon entropy and the uncertainty preorder, obtaining new insights into how they are related. In particular, we show how injective montones can be used to generalize some appealing properties of Jaynes' maximum entropy principle, which is considered a basis for statistical inference and serves as a justification for many regularization techniques that appear throughout machine learning and decision theory.
翻译:我们引入了在预定空格中新型的具有实际价值的单质单质物,即给定单质物。我们显示,预购品的类别在于具有严格的单质物和具有可计算多功能的预购品类别之间,通过实际价值单质物改进预购空间的已知分类。我们将严格单质物(Richter-Peleg 函数)的几种众所周知的结果扩大到给定单质物,我们从可计数的多种用途中构建了注射单质,并将预购单质物与关于Debreu密度和秩序分离的经典结果联系起来。 同时,我们把我们的结果与香农的诱导体和不确定性预购品联系起来,获得关于它们之间联系的新认识。特别是,我们展示了如何利用预导质联质物来概括Jaynes最大诱导理的一些吸引人的特性,该原理被视为统计推理的基础,并成为在整个机器学习和决定理论中出现的许多正规化技术的理由。