One of the important problem in reliability analysis is computation of stress-strength reliability. But it is impractical to compute it in certain situations. So the estimation stay as an alternative solution to get an approximate value of the reliability. There are research papers which deals with stress-strength reliability analysis using statistical distributions. In this paper, a stress-strength reliability model for exponential-gamma$(3,\lambda)$ distribution is introduced. The maximum likelihood estimator (MLE) for the model parameters is derived. Asymptotic distribution and confidence interval for the maximum likelihood estimates of stress-strength reliability, $R=P(X>Y)$, are given. The numerical illustration is performed using Monte Carlo simulations. The results are analyzed with real data analysis.
翻译:可靠性分析的一个重要问题是计算压力强度的可靠性。 但在某些情况下计算它是不切实际的。 因此, 估算中止是获得可靠性近似值的替代解决方案。 有研究论文涉及使用统计分布进行压力强度可靠性分析。 本文采用了指数- 伽玛元( 3,\lambda) 分布的压力强度可靠性模型。 模型参数的最大可能性估计值( MLE) 得到推算。 给出了压力强度可靠性最大可能性估计的Asymptistic分布和信任区间, $R=P( X>Y)$。 数字示例是使用蒙特卡洛模拟进行的。 分析结果时使用了真实的数据分析。