Many socially valuable activities depend on sensitive information, such as medical research, public health policies, political coordination, and personalized digital services. This is often posed as an inherent privacy trade-off: we can benefit from data analysis or retain data privacy, but not both. Across several disciplines, a vast amount of effort has been directed toward overcoming this trade-off to enable productive uses of information without also enabling undesired misuse, a goal we term `structured transparency'. In this paper, we provide an overview of the frontier of research seeking to develop structured transparency. We offer a general theoretical framework and vocabulary, including characterizing the fundamental components -- input privacy, output privacy, input verification, output verification, and flow governance -- and fundamental problems of copying, bundling, and recursive oversight. We argue that these barriers are less fundamental than they often appear. Recent progress in developing `privacy-enhancing technologies' (PETs), such as secure computation and federated learning, may substantially reduce lingering use-misuse trade-offs in a number of domains. We conclude with several illustrations of structured transparency -- in open research, energy management, and credit scoring systems -- and a discussion of the risks of misuse of these tools.
翻译:许多具有社会价值的活动依赖于敏感信息,如医学研究、公共卫生政策、政治协调以及个性化数字服务等。这往往是一种内在的隐私权衡:我们可以从数据分析中获益,或者保留数据隐私,但不能两者兼而有之。在几个学科,我们作出了大量努力,克服这种权衡,以便能够在不鼓励不必要滥用的情况下对信息进行生产性利用,这也是我们称为“结构性透明度”的目标。在本文件中,我们概述了旨在发展结构化透明度的研究的前沿。我们提供了一个一般性理论框架和词汇,包括描述基本组成部分的特点 -- -- 投入隐私、产出隐私、投入核查、产出核查和流程治理 -- -- 以及复制、捆绑和循环监督等根本问题。我们指出,这些障碍比通常看起来要少得多。最近在开发“增强隐私技术”方面取得的进展,例如安全计算和填充学习,可能大大减少一些领域长期存在的使用不当交易的利弊。我们最后举出几个关于这些工具的结构性透明度的说明 -- -- 公开研究、能源管理和信用评级系统以及风险的讨论。