Deep learning-based adversarial malware detectors have yielded promising results in detecting never-before-seen malware executables without relying on expensive dynamic behavior analysis and sandbox. Despite their abilities, these detectors have been shown to be vulnerable to adversarial malware variants - meticulously modified, functionality-preserving versions of original malware executables generated by machine learning. Due to the nature of these adversarial modifications, these adversarial methods often use a \textit{single view} of malware executables (i.e., the binary/hexadecimal view) to generate adversarial malware variants. This provides an opportunity for the defenders (i.e., malware detectors) to detect the adversarial variants by utilizing more than one view of a malware file (e.g., source code view in addition to the binary view). The rationale behind this idea is that while the adversary focuses on the binary view, certain characteristics of the malware file in the source code view remain untouched which leads to the detection of the adversarial malware variants. To capitalize on this opportunity, we propose Adversarially Robust Multiview Malware Defense (ARMD), a novel multi-view learning framework to improve the robustness of DL-based malware detectors against adversarial variants. Our experiments on three renowned open-source deep learning-based malware detectors across six common malware categories show that ARMD is able to improve the adversarial robustness by up to seven times on these malware detectors.
翻译:深重的基于学习的对抗性恶意软件检测器在不依赖昂贵的动态行为分析和沙箱的情况下,在发现从未见过的恶意软件执行器方面产生了令人乐观的结果。 尽管这些检测器具有各种能力, 却被证明很容易被对抗性恶意软件变异器( 仔细修改的、 功能保留版本的机器学习产生的原始恶意软件执行器。 由于这些对抗性修改的性质, 这些对抗性方法经常使用恶意软件执行器( 即二进制/ 十六进制视图) 来生成对抗性恶意软件变异器。 这为捍卫者( 恶意软件探测器)提供了一个机会, 通过使用超过一种对恶意软件文件( 例如, 原始代码视图和二进制观点之外) 来检测对抗性恶意软件变异体。 这个想法背后的理由是, 对手的焦点是基于双进制观点的恶意软件变异体( 即二进制/ 16进制视图), 使维护者( 恶意软件变体变体) 能够检测对抗性恶意变体变体变体变体变体变体变体变体变体变体。