Deep learning-based adversarial malware detectors have yielded promising results in detecting never-before-seen malware executables without relying on expensive dynamic behavior analysis and sandbox. Despite their abilities, these detectors have been shown to be vulnerable to adversarial malware variants - meticulously modified, functionality-preserving versions of original malware executables generated by machine learning. Due to the nature of these adversarial modifications, these adversarial methods often use a \textit{single view} of malware executables (i.e., the binary/hexadecimal view) to generate adversarial malware variants. This provides an opportunity for the defenders (i.e., malware detectors) to detect the adversarial variants by utilizing more than one view of a malware file (e.g., source code view in addition to the binary view). The rationale behind this idea is that while the adversary focuses on the binary view, certain characteristics of the malware file in the source code view remain untouched which leads to the detection of the adversarial malware variants. To capitalize on this opportunity, we propose Adversarially Robust Multiview Malware Defense (ARMD), a novel multi-view learning framework to improve the robustness of DL-based malware detectors against adversarial variants. Our experiments on three renowned open-source deep learning-based malware detectors across six common malware categories show that ARMD is able to improve the adversarial robustness by up to seven times on these malware detectors.


翻译:深重的基于学习的对抗性恶意软件检测器在不依赖昂贵的动态行为分析和沙箱的情况下,在发现从未见过的恶意软件执行器方面产生了令人乐观的结果。 尽管这些检测器具有各种能力, 却被证明很容易被对抗性恶意软件变异器( 仔细修改的、 功能保留版本的机器学习产生的原始恶意软件执行器。 由于这些对抗性修改的性质, 这些对抗性方法经常使用恶意软件执行器( 即二进制/ 十六进制视图) 来生成对抗性恶意软件变异器。 这为捍卫者( 恶意软件探测器)提供了一个机会, 通过使用超过一种对恶意软件文件( 例如, 原始代码视图和二进制观点之外) 来检测对抗性恶意软件变异体。 这个想法背后的理由是, 对手的焦点是基于双进制观点的恶意软件变异体( 即二进制/ 16进制视图), 使维护者( 恶意软件变体变体) 能够检测对抗性恶意变体变体变体变体变体变体变体变体变体变体。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
38+阅读 · 2020年3月10日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员