Oscillation stability is an important concept in Banach space theory which happens to be closely connected to discrete Ramsey theory. For example, Gowers proved oscillation stability for the Banach space $c_0$ using his now famous Ramsey theorem for $\mathrm{FIN}_k$ as the key ingredient. We develop the theory behind this connection and introduce the notion of compact big Ramsey degrees, extending the theory of (discrete) big Ramsey degrees. We then prove existence of compact big Ramsey degrees for the Banach space $\ell_\infty$ and the Urysohn sphere, with an explicit characterization in the case of $\ell_\infty$.


翻译:振荡稳定性是Banach空间理论中的一个重要概念,它与离散Ramsey定理密切相关。例如,Gowers使用他现在著名的$\mathrm{FIN}_k$ Ramsey定理作为主要工具,证明了在Banach空间$c_0$中存在振荡稳定性。我们发展了这个连接的理论,并引入了紧致大Ramsey度数的概念,扩展了(discrete) big Ramsey度数的理论。然后,我们证明了$\ell_\infty$ Banach空间和Urysohn球中存在紧致大Ramsey度数,并在$\ell_\infty$情况下明确了其特征。

0
下载
关闭预览

相关内容

【干货书】深度学习数学:理解神经网络,347页pdf
专知会员服务
264+阅读 · 2022年7月3日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
74+阅读 · 2021年12月8日
【干货书】统计学习导论,431页pdf讲解数据科学知识
专知会员服务
79+阅读 · 2021年6月7日
专知会员服务
51+阅读 · 2020年12月14日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月15日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员