Oscillation stability is an important concept in Banach space theory which happens to be closely connected to discrete Ramsey theory. For example, Gowers proved oscillation stability for the Banach space $c_0$ using his now famous Ramsey theorem for $\mathrm{FIN}_k$ as the key ingredient. We develop the theory behind this connection and introduce the notion of compact big Ramsey degrees, extending the theory of (discrete) big Ramsey degrees. We then prove existence of compact big Ramsey degrees for the Banach space $\ell_\infty$ and the Urysohn sphere, with an explicit characterization in the case of $\ell_\infty$.
翻译:振荡稳定性是Banach空间理论中的一个重要概念,它与离散Ramsey定理密切相关。例如,Gowers使用他现在著名的$\mathrm{FIN}_k$ Ramsey定理作为主要工具,证明了在Banach空间$c_0$中存在振荡稳定性。我们发展了这个连接的理论,并引入了紧致大Ramsey度数的概念,扩展了(discrete) big Ramsey度数的理论。然后,我们证明了$\ell_\infty$ Banach空间和Urysohn球中存在紧致大Ramsey度数,并在$\ell_\infty$情况下明确了其特征。