Convolution operator is the core of convolutional neural networks (CNNs) and occupies the most computation cost. To make CNNs more efficient, many methods have been proposed to either design lightweight networks or compress models. Although some efficient network structures have been proposed, such as MobileNet or ShuffleNet, we find that there still exists redundant information between convolution kernels. To address this issue, we propose a novel dynamic convolution method to adaptively generate convolution kernels based on image contents. To demonstrate the effectiveness, we apply dynamic convolution on multiple state-of-the-art CNNs. On one hand, we can reduce the computation cost remarkably while maintaining the performance. For ShuffleNetV2/MobileNetV2/ResNet18/ResNet50, DyNet can reduce 37.0/54.7/67.2/71.3% FLOPs without loss of accuracy. On the other hand, the performance can be largely boosted if the computation cost is maintained. Based on the architecture MobileNetV3-Small/Large, DyNet achieves 70.3/77.1% Top-1 accuracy on ImageNet with an improvement of 2.9/1.9%. To verify the scalability, we also apply DyNet on segmentation task, the results show that DyNet can reduce 69.3% FLOPs while maintaining Mean IoU on segmentation task.


翻译:革命中枢是革命神经网络的核心, 并占据了最高的计算成本。 为了使CNN更有效率, 已经提出了许多方法来设计轻量网络或压缩模型。 虽然已经提出了一些高效网络结构, 如移动网络或ShuffleNet, 但我们发现, 共进内核之间仍然存在着多余的信息。 为了解决这个问题, 我们提出一种新的动态革命方法, 以根据图像内容进行适应性生成共进内核。 为了展示效果, 我们用动态的共进法对多个最先进的CNN进行动态革命。 一方面, 我们可以在保持性能的同时大幅降低计算成本。 对于ShuffleNetV2/ MobileNet2/ResNet18/ResNet50, DyNet可以减少37. 0/547/ 67.2/71. 3% FLOPs, 而不会失去准确性。 另一方面, 如果计算成本得以维持, 性能将大大提高。 根据结构 MoveNet3- Small/Le, DyNet 实现70.3/77.1 的计算成本。 在图像网络上, D-1 1% 的精确性部分上, 校验 DIL 任务, 。 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校, 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校 校

0
下载
关闭预览

相关内容

【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关VIP内容
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
内涵网络嵌入:Content-rich Network Embedding
我爱读PAMI
4+阅读 · 2019年11月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Simplifying Graph Convolutional Networks
Arxiv
12+阅读 · 2019年2月19日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
11+阅读 · 2018年10月17日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
7+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员