In this paper, we tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing FL algorithms are applicable. In particular, the objective has the form of $\mathbb E_{z\sim S_1} f(\mathbb E_{z'\sim S_2} \ell(w; z, z'))$, where two sets of data $S_1, S_2$ are distributed over multiple machines, $\ell(\cdot)$ is a pairwise loss that only depends on the prediction outputs of the input data pairs $(z, z')$, and $f(\cdot)$ is possibly a non-linear non-convex function. This problem has important applications in machine learning, e.g., AUROC maximization with a pairwise loss, and partial AUROC maximization with a compositional loss. The challenges for designing an FL algorithm lie in the non-decomposability of the objective over multiple machines and the interdependency between different machines. To address the challenges, we propose an active-passive decomposition framework that decouples the gradient's components with two types, namely active parts and passive parts, where the active parts depend on local data that are computed with the local model and the passive parts depend on other machines that are communicated/computed based on historical models and samples. Under this framework, we develop two provable FL algorithms (FeDXL) for handling linear and nonlinear $f$, respectively, based on federated averaging and merging. We develop a novel theoretical analysis to combat the latency of the passive parts and the interdependency between the local model parameters and the involved data for computing local gradient estimators. We establish both iteration and communication complexities and show that using the historical samples and models for computing the passive parts do not degrade the complexities. We conduct empirical studies of FeDXL for deep AUROC and partial AUROC maximization, and demonstrate their performance compared with several baselines.
翻译:在本文中, 我们处理一个新颖的Federal- federal 学习( FL) 问题, 以优化一个有氧风险的家庭, 并不适用现有的 FL 算法。 特别是, 目标的形式是 $\ mathbb Ez\ sim S_ 1} f (mathb Ezz's\sim S_ 2}\ ell( w; z, z' z) 美元) 。 这个问题在机器学习中有着重要的应用, 例如 AUROC 以双向损失实现最大化, 部分通过多个机器分配 s_ 1, S_ 2 美元, 美元是 美元, 美元是 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 。 问题, 两种, 两种, 。 。 两种, 机, 两种, 机, 。 两种, 。