The prevalence of chronic non-communicable diseases such as obesity has noticeably increased in the last decade. The study of these diseases in early life is of paramount importance in determining their course in adult life and in supporting clinical interventions. Recently, attention has been drawn on approaches that study the alteration of metabolic pathways in obese children. In this work, we propose a novel joint modelling approach for the analysis of growth biomarkers and metabolite concentrations, to unveil metabolic pathways related to child obesity. Within a Bayesian framework, we flexibly model the temporal evolution of growth trajectories and metabolic associations through the specification of a joint non-parametric random effect distribution which also allows for clustering of the subjects, thus identifying risk sub-groups. Growth profiles as well as patterns of metabolic associations determine the clustering structure. Inclusion of risk factors is straightforward through the specification of a regression term. We demonstrate the proposed approach on data from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) cohort study, based in Singapore. Posterior inference is obtained via a tailored MCMC algorithm, accommodating a nonparametric prior with mixed support. Our analysis has identified potential key pathways in obese children that allows for exploration of possible molecular mechanisms associated with child obesity.


翻译:在过去十年中,肥胖等慢性非传染性疾病的发病率明显增加。这些疾病的早期早期研究对于确定成人生活过程和支持临床干预至关重要。最近,人们注意到研究肥胖儿童代谢途径改变的方法;在这项工作中,我们提议采用新的联合建模方法,分析生长生物标志和代谢物浓度,揭示与儿童肥胖有关的代谢途径;在巴伊西亚框架内,我们灵活地模拟生长轨迹和代谢协会的时间演变,具体指定一种联合非参数随机效应分布,也允许对主体进行分组,从而确定风险分组。增长概况和代谢协会模式决定集群结构。将风险因素纳入一个回归术语的规格是直截了当的。我们展示了基于新加坡的《新加坡增长:实现健康结果》(GUSTO)组研究的拟议方法。我们通过定制的MC算法,通过适应非参数随机随机效应分布,将对象集中起来,从而确定风险分组。我们的分析使得儿童有可能通过与混合的探索路径进行关键分析。我们已查明了儿童的潜力。

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
53+阅读 · 2020年9月7日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
10+阅读 · 2018年5月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月7日
Arxiv
9+阅读 · 2021年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
10+阅读 · 2018年5月2日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员