Using sample surveys as a cost effective tool to provide estimates for characteristics of interest at population and sub-populations (area/domain) level has a long tradition in "small area estimation". However, the existence of outliers in the sample data can significantly affect the estimation for areas in which they occur, especially where the domain-sample size is small. Based on existing robust estimators for small area estimation we propose two novel approaches for bias calibration. A series of simulations shows that our methods lead to more efficient estimators in comparison with other existing bias-calibration methods. As a real data example we apply our estimators to obtain \textit{Gini} coefficients in labour market areas of the Tuscany region of Italy, where our sources of information are the EU-SILC survey and the Italian census. This analysis shows that the new methods reveal a different picture than existing methods. We extend our ideas to predictions for non-sampled areas.


翻译:利用抽样调查作为一种成本效益高的工具,提供人口和亚人口(地区/地区)感兴趣特征的估计数,在“小面积估计”方面有着悠久的传统。然而,抽样数据中存在外部值,会大大影响对发生外部值的地区的估计,特别是在域抽样规模小的地区。根据现有的对小面积估计的可靠估计,我们提出了两种新的偏差校准方法。一系列模拟表明,我们的方法与其他现有的偏差校准方法相比,导致更有效率的估测者。作为一个真正的数据实例,我们运用我们的估计数据,在意大利图斯卡尼地区的劳动力市场地区获取\textit{Gini}系数。 我们的资料来源是欧盟-SILC调查和意大利人口普查。这一分析表明,新方法显示了与现有方法不同的情况。我们将我们的想法扩大到对非抽样地区的预测。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员