We propose a preconditioner for the Helmholtz exterior problems on multi-screens. For this, we combine quotient-space BEM and operator preconditioning. For a class of multi-screens (which we dub \emph{type A} multi-screens), we show that this approach leads to block diagonal Calder\'on preconditioners and results in a spectral condition number that grows only logarithmically with $h$, just as in the case of simple screens. Since the resulting scheme contains many more DoFs than strictly required, we also present strategies to remove almost all redundancy without significant loss of effectiveness of the preconditioner. We verify these findings by providing representative numerical results. Further numerical experiments suggest that these results can be extended beyond type A multi-screens and that the numerical method introduced here can be applied to essentially all multi-screens encountered by the practitioner, leading to a significantly reduced simulation cost.
翻译:我们为多屏幕上的Helmholtz外表问题提出了一个先决条件。 为此, 我们将空空 BEM 和操作员的先决条件结合起来。 对于一组多屏幕( 我们称之为 emph{ type A) 的多屏幕, 我们显示, 这种方法可以阻断对立的 Calder\' on 先决条件, 并产生一个光谱条件号码, 与简单屏幕一样, 仅以美元对调增长, 就象简单屏幕一样。 由于由此产生的计划包含的多倍数超过严格要求, 我们还提出一些战略, 在不显著丧失先决条件有效性的情况下消除几乎所有冗余。 我们通过提供具有代表性的数字结果来验证这些结果。 进一步的数值实验表明, 这些结果可以超越多屏幕的类型, 并且这里引入的数字方法可以应用于从业人员遇到的所有多屏幕, 导致模拟成本的大幅降低。