The principal diffusion directions, representing the tissue fiber orientations, are one of the most important markers derived from diffusion tensor imaging (DTI). They are frequently analyzed in several medical studies. However, only a few approaches are available for covariate-dependent statistical analysis for the principal diffusion direction data. To address this gap, we propose a novel generalized linear model to analyze such that using a von Mises Fisher (vMF) distributed error structure. Using a novel link function that relies on the transformation between Cartesian and spherical coordinates, we regress the vMF distributed principal diffusion directions on the subject's covariates. This regression model allows us to measure the importance of the clinical factors on fiber orientations. Furthermore, we impose the spatial dependence to be supported along a given fiber using an autoregressive model. This novel specification renders computational efficiency and flexibility. For Bayesian inference of the directional data, a comprehensive toolbox is thoroughly developed with applications to neuroimaging analysis. We first show the method's empirical efficacy through simulation experiments. Subsequently, applying our regression model to the Alzheimer's Disease Neuroimaging Initiative (ADNI) data, we acquire new insights related to the progression of cognitive impairment.
翻译:代表组织纤维方向的主要扩散方向,是来自散射振动成像(DTI)的最重要标志之一。它们经常在一些医学研究中分析。然而,对于主要扩散方向数据,只有几种方法可用于共变的统计分析。为解决这一差距,我们提出了一个新的通用线性模型,用于分析使用冯米泽斯费舍尔(vMF)分布式误差结构。我们使用依赖碳酸盐和球体坐标转换的新颖联系功能,在对象的共变量上反转 vMF 分布式主要扩散方向。这个回归模型使我们能够测量纤维方向上的临床因素的重要性。此外,我们用一种自反向模型将空间依赖附在给定纤维上。这个新的规格可以使计算效率和灵活性。关于方向数据的推断,一个综合工具箱是随着神经成形分析的应用而全面开发的。我们首先通过模拟实验来显示该方法的经验性功效。我们随后将我们的回归模型应用于老年痴呆症神经成像变异化倡议(ADNeuromismaging iming iming Inview) 数据。