We investigate the trade-off between rate, privacy and storage in federated learning (FL) with top $r$ sparsification, where the users and the servers in the FL system only share the most significant $r$ and $r'$ fractions, respectively, of updates and parameters in the FL process, to reduce the communication cost. We present schemes that guarantee information theoretic privacy of the values and indices of the sparse updates sent by the users at the expense of a larger storage cost. To this end, we generalize the scheme to reduce the storage cost by allowing a certain amount of information leakage. Thus, we provide the general trade-off between the communication cost, storage cost, and information leakage in private FL with top $r$ sparsification, along the lines of two proposed schemes.
翻译:我们调查费率、隐私和联邦学习(FL)中储量与最高额美元溢漏率之间的权衡,即FL系统中的用户和服务器仅分别分享FL流程中最重要的更新和参数的分数,以减少通信成本;我们提出一些计划,保证用户发送的稀少更新的价值和指数的信息理论保密性,而牺牲更大的存储成本;为此,我们通过允许一定数量的信息泄漏,推广降低存储成本的计划;因此,我们按照两个拟议计划提供通信成本、存储成本和私人FL信息泄漏之间的一般权衡,以及最高额美元溢漏。