Machine learning approaches have recently been leveraged as a substitute or an aid for physical/mathematical modeling approaches to dynamical systems. To develop an efficient machine learning method dedicated to modeling and prediction of multiscale dynamics, we propose a reservoir computing (RC) model with diverse timescales by using a recurrent network of heterogeneous leaky integrator (LI) neurons. We evaluate computational performance of the proposed model in two time series prediction tasks related to four chaotic fast-slow dynamical systems. In a one-step-ahead prediction task where input data are provided only from the fast subsystem, we show that the proposed model yields better performance than the standard RC model with identical LI neurons. Our analysis reveals that the timescale required for producing each component of target multiscale dynamics is appropriately and flexibly selected from the reservoir dynamics by model training. In a long-term prediction task, we demonstrate that a closed-loop version of the proposed model can achieve longer-term predictions compared to the counterpart with identical LI neurons depending on the hyperparameter setting.
翻译:最近利用机器学习方法,替代或协助物理/数学模拟动态系统的动态系统。为了开发一种高效的机器学习方法,专门用于模拟和预测多尺度动态,我们提议使用一个由多种渗漏综合器神经元组成的经常性网络,采用不同时间尺度的储油层计算模型;我们用四个混乱的快速流动动态系统有关的两个时间序列预测任务来评估拟议模型的计算性能。在一个仅从快速子系统提供输入数据的单步头预测任务中,我们显示,拟议的模型比标准RC模型的性能好,使用相同的里程神经元。我们的分析表明,通过模型培训从储油层动态中适当和灵活地选择了目标多尺度动态每个组成部分所需的时间尺度。在一项长期预测任务中,我们证明,一个封闭式模型可以实现较长期的预测,而与之相对应的是,根据超分度设置与相同的里神经元。