A practical automatic textual math word problems (MWPs) solver should be able to solve various textual MWPs while most existing works only focused on one-unknown linear MWPs. Herein, we propose a simple but efficient method called Universal Expression Tree (UET) to make the first attempt to represent the equations of various MWPs uniformly. Then a semantically-aligned universal tree-structured solver (SAU-Solver) based on an encoder-decoder framework is proposed to resolve multiple types of MWPs in a unified model, benefiting from our UET representation. Our SAU-Solver generates a universal expression tree explicitly by deciding which symbol to generate according to the generated symbols' semantic meanings like human solving MWPs. Besides, our SAU-Solver also includes a novel subtree-level semanticallyaligned regularization to further enforce the semantic constraints and rationality of the generated expression tree by aligning with the contextual information. Finally, to validate the universality of our solver and extend the research boundary of MWPs, we introduce a new challenging Hybrid Math Word Problems dataset (HMWP), consisting of three types of MWPs. Experimental results on several MWPs datasets show that our model can solve universal types of MWPs and outperforms several state-of-the-art models.
翻译:一个实用的自动文本数学解答器(MWPs)应该能够解决各种文本解码解码器问题,而大多数现有作品只侧重于一个未知的线性 mWP。在这里,我们提出了一个简单而有效的方法,名为“通用表达图树(UET) ”, 首次尝试统一代表各种 mWP的方程式。然后,基于一个编码-解码框架,提议一个符合语义的通用树结构解析器(SAU-Solver), 在一个统一的模型中解决多种类型的 MWP,这得益于我们的 UET 代表。 我们的 SAU-Solver 生成了一个通用表达树, 明确地通过决定根据生成的符号的语义含义生成哪个符号。 此外,我们的 SAU-Solver 还包含一个新的小树级静态调校正调整器(SAU-Solver), 以进一步实施生成的表达式树的语义限制和合理性。最后, 验证我们的解析器的普遍性并扩展MWPs的研究范围, 我们引入了一个新的具有挑战性的MWP 3 类混合的模型模型, 和MWP 显示数个模型的数据类型。