In streaming Singular Value Decomposition (SVD), $d$-dimensional rows of a possibly infinite matrix arrive sequentially as points in $\mathbb{R}^d$. An $\epsilon$-coreset is a (much smaller) matrix whose sum of square distances of the rows to any hyperplane approximates that of the original matrix to a $1 \pm \epsilon$ factor. Our main result is that we can maintain a $\epsilon$-coreset while storing only $O(d \log^2 d / \epsilon^2)$ rows. Known lower bounds of $\Omega(d / \epsilon^2)$ rows show that this is nearly optimal. Moreover, each row of our coreset is a weighted subset of the input rows. This is highly desirable since it: (1) preserves sparsity; (2) is easily interpretable; (3) avoids precision errors; (4) applies to problems with constraints on the input. Previous streaming results for SVD that return a subset of the input required storing $\Omega(d \log^3 n / \epsilon^2)$ rows where $n$ is the number of rows seen so far. Our algorithm, with storage independent of $n$, is the first result that uses finite memory on infinite streams. We support our findings with experiments on the Wikipedia dataset benchmarked against state-of-the-art algorithms.


翻译:在串流 Singulal 值分解( SVD) 中, $d- 维维值数行中, 一个可能无限的矩阵的美元- 维值行依次以美元=mathb{R ⁇ d$ $. ==d$ ==d$。 $silon$- coolset 是一个( 大大小的) 矩阵, 该矩阵将各行的平方距离与任何超高机的平方距离相近, 接近于原始矩阵中的1美元=pm \ pm \ \ = epsilon 系数。 我们的主要结果是, 我们可以保持一个 $psilable ; (2) 容易解释; (3) 避免精确错误; (4) 适用于输入限制 。 SVD 先前的流结果, 将 $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxal_ ral_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

奇异值分解(Singular Value Decomposition)是线性代数中一种重要的矩阵分解,奇异值分解则是特征分解在任意矩阵上的推广。在信号处理、统计学等领域有重要应用。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
专知会员服务
139+阅读 · 2020年5月19日
专知会员服务
82+阅读 · 2020年5月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【 关关的刷题日记53】 Leetcode 100. Same Tree
专知
10+阅读 · 2017年12月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月12日
Arxiv
0+阅读 · 2021年1月11日
Arxiv
3+阅读 · 2018年12月21日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
3+阅读 · 2018年8月21日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【 关关的刷题日记53】 Leetcode 100. Same Tree
专知
10+阅读 · 2017年12月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员