We describe the application of the Bradley-Terry model to NCAA Division I Men's Ice Hockey. A Bayesian construction gives a joint posterior probability distribution for the log-strength parameters, given a set of game results and a choice of prior distribution. For several suitable choices of prior, it is straightforward to find the maximum a posteriori point (MAP) and a Hessian matrix, allowing a Gaussian approximation to be constructed. Posterior predictive probabilities can be estimated by 1) setting the log-strengths to their MAP values, 2) using the Gaussian approximation for analytical or Monte Carlo integration, or 3) applying importance sampling to re-weight the results of a Monte Carlo simulation. We define a method to evaluate any models which generate predicted probabilities for future outcomes, using the Bayes factor given the actual outcomes, and apply it to NCAA tournament results. Finally, we describe an on-line tool which currently estimates probabilities of future results using MAP evaluation and describe how it can be refined using the Gaussian approximation or importance sampling.
翻译:我们描述了布拉德利-特利模型在美国大学一级男子冰球比赛中的应用。贝叶斯构建给出了对数强度参数的联合后验概率分布,给定一组比赛结果和先验分布的选择。对于若干合适的先验选择,可以简单地求出最大后验概率点(MAP)和海森矩阵,从而构造出高斯近似。我们可以通过以下三种方法来估计后验预测概率:1)将对数强度设为其MAP值,2)使用高斯近似进行分析或蒙特卡罗积分,或者3)应用重要性采样来重新加权蒙特卡罗模拟的结果。我们定义了一个方法来评估任何生成未来结果预测概率的模型,使用贝叶斯因子给出实际结果,并将其应用于NCAA锦标赛结果中。最后,我们描述了一个在线工具,目前使用MAP评估估计未来结果的概率,并描述了如何使用高斯近似或重要性采样来改进它。