Recently researchers have studied input leakage problems in Federated Learning (FL) where a malicious party can reconstruct sensitive training inputs provided by users from shared gradient. It raises concerns about FL since input leakage contradicts the privacy-preserving intention of using FL. Despite a relatively rich literature on attacks and defenses of input reconstruction in Horizontal FL, input leakage and protection in vertical FL starts to draw researcher's attention recently. In this paper, we study how to defend against input leakage attacks in Vertical FL. We design an adversarial training-based framework that contains three modules: adversarial reconstruction, noise regularization, and distance correlation minimization. Those modules can not only be employed individually but also applied together since they are independent to each other. Through extensive experiments on a large-scale industrial online advertising dataset, we show our framework is effective in protecting input privacy while retaining the model utility.
翻译:最近研究人员研究了联邦学习联合会(FL)的输入渗漏问题,恶意方可以重建用户从共同梯度提供的敏感培训投入,这引起了对FL的关切,因为投入渗漏与使用FL的隐私保护意图相矛盾。尽管关于横向FL攻击和捍卫投入重建的文献相对丰富,纵向FL输入渗漏和保护最近开始引起研究人员的注意。在本文中,我们研究如何在垂直FL中防范投入渗漏攻击。我们设计了一个基于对抗性培训的框架,包括三个模块:对抗性重建、噪音规范化和距离相关最小化。这些模块不仅可以单独使用,而且可以同时使用,因为它们相互独立。通过大规模工业在线广告数据集的广泛实验,我们展示了我们的框架在保护投入隐私的同时保留模型实用性是有效的。